pH- and sodium-induced changes in a sodium/proton antiporter

نویسندگان

  • Cristina Paulino
  • Werner Kühlbrandt
چکیده

We examined substrate-induced conformational changes in MjNhaP1, an archaeal electroneutral Na(+)/H(+)-antiporter resembling the human antiporter NHE1, by electron crystallography of 2D crystals in a range of physiological pH and Na(+) conditions. In the absence of sodium, changes in pH had no major effect. By contrast, changes in Na(+) concentration caused a marked conformational change that was largely pH-independent. Crystallographically determined, apparent dissociation constants indicated ∼10-fold stronger Na(+) binding at pH 8 than at pH 4, consistent with substrate competition for a common ion-binding site. Projection difference maps indicated helix movements by about 2 Å in the 6-helix bundle region of MjNhaP1 that is thought to contain the ion translocation site. We propose that these movements convert the antiporter from the proton-bound, outward-open state to the Na(+)-bound, inward-open state. Oscillation between the two states would result in rapid Na(+)/H(+) antiport. DOI: http://dx.doi.org/10.7554/eLife.01412.001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in a cultured renal cell line.

Sodium-proton antiporter activity can be modulated through changes Vmax and/or intracellular proton sensitivity of the antiporter. To characterize a parathyroid hormone (PTH)-induced decrease in antiporter activity in a continuous renal cell line (opossum kidney cells), the extracellular sodium and intracellular proton dependence of amiloride-inhibitable 22Na uptake was studied. The Km for extr...

متن کامل

Sodium/proton antiporter in Streptococcus faecalis.

Streptococcus faecalis, like other bacteria, accumulates potassium ions and expels sodium ions. This paper is concerned with the pathway of sodium extrusion. Earlier studies (D.L. Heefner and F.M. Harold, Proc. Natl. Acad. Sci. USA 79:2798-2802, 1982) showed that sodium extrusion is effected by a primary, ATP-linked sodium pump. I report here that cells grown under conditions in which sodium AT...

متن کامل

Mechanism of pH-dependent activation of the sodium-proton antiporter NhaA

Escherichia coli NhaA is a prototype sodium-proton antiporter, which has been extensively characterized by X-ray crystallography, biochemical and biophysical experiments. However, the identities of proton carriers and details of pH-regulated mechanism remain controversial. Here we report constant pH molecular dynamics data, which reveal that NhaA activation involves a net charge switch of a pH ...

متن کامل

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

Crystal structure of the sodium–proton antiporter NhaA dimer and new mechanistic insights

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014